Skip to content

Style

Enum

Node Shape

The available point shapes (xgmml.utils.style_utils.NODE_SHAPES) are as follows:

Enum Example
ELLIPSE
RECTANGLE
HEXAGON
OCTAGON
DIAMOND
TRIANGLE
ROUNDED_RECTANGLE

Line Type

The available line types (xgmml.utils.style_utils.LINE_TYPES) are as follows:

Enum Example
SOLID
LONG_DASH
DOT
DASH_DOT
EQUAL_DASH
PARALLEL_LINES
VERTICAL_SLASH
FORWARD_SLASH
BACKWARD_SLASH
CONTIGUOUS_ARROW
SEPARATE_ARROW
SINEWAVE
ZIGZAG

Arrow Shape

The available arrow shapes (xgmml.utils.style_utils.ARROW_SHAPES) are as follows:

Enum Example
ARROW
ARROW_SHORT
CIRCLE
CROSS_DELTA
CROSS_OPEN_DELTA
DELTA
DELTA_SHORT_1
DELTA_SHORT_2
DIAMOND
DIAMOND_SHORT_1
DIAMOND_SHORT_2
HALF_BOTTOM
HALF_CIRCLE
HALF_TOP
NONE
OPEN_CIRCLE
OPEN_DELTA
OPEN_DIAMOND
OPEN_HALF_CIRCLE
OPEN_SQUARE
SQUARE
T

Color

The default discrete colors (xgmml.utils.style_utils.COLORS) are as follows:

HEX Example
#1783FF
#00C9C9
#F0884D
#D580FF
#7863FF
#60C42D
#BD8F24
#FF80CA
#2491B3
#17C76F

The default continuous color is coolwarm in matplotlib, as shown below:

Mapper

Base mapper

The base mapper is the base class for all mappers:

class StyleMapper(ABC):
    def __init__(self, values: list, **kwargs):
        self._values = values

    @abstractmethod
    def map(self, value):
        raise NotImplementedError()

The mapper maps style values via the map method. The kwargs in the write method of the XGMMLWriter object will be passed to the initialization method of the StyleMapper class.

Discrete mapper

The default discrete style mappers are:

  • Point shape: xgmml.style.style_mapper.StyleNodeShapeDefaultDiscreteMapper
  • Color: xgmml.style.style_mapper.StyleColorDefaultDiscreteMapper
  • Line type: xgmml.style.style_mapper.StyleLineTypeDefaultDiscreteMapper
  • Arrow shape: xgmml.style.style_mapper.StyleArrowShapeDefaultDiscreteMapper

Custom discrete style mappers need to inherit from the xgmml.style.style_mapper.StyleDiscreteMapper class:

class StyleDiscreteMapper(StyleMapper):
    def __init__(self, values: list, styles: list, **kwargs):
        super(StyleDiscreteMapper, self).__init__(values)

        self._styles = styles
        self._categories = sorted(set(values), key=self._sort_key)

    def _sort_key(self, value):
        return value

    def map(self, value):
        category_idx = self._categories.index(value)
        style_idx = category_idx % len(self._styles)

        return self._styles[style_idx]

While, values is a list of discrete values, and styles is a list of corresponding styles.

Custom color discrete style mappers need to inherit from the xgmml.style.style_mapper.StyleColorDiscreteMapper class:

class StyleColorDiscreteMapper(StyleMapper):
    def __init__(self, values: list, colormap: mpl.colors.ListedColormap, **kwargs):
        super(StyleColorDiscreteMapper, self).__init__(values)

        self._colors = colormap.colors
        self._categories = sorted(set(values), key=self._sort_key)

    def _sort_key(self, value):
        return value

    def map(self, value):
        category_idx = self._categories.index(value)
        color_idx = category_idx % len(self._colors)

        return mpl.colors.to_hex(self._colors[color_idx])

While, values is a list of discrete values, and colormap is an instance of mpl.colors.ListedColormap of matplotlib.

All of the above can overload the _sort_key method, which is used for the sorting key of discrete values.

Continuous mapper

The default continuous style mappers are:

  • Point size: xgmml.style.style_mapper.StyleNodeSizeDefaultContinuousMapper
  • Font size: xgmml.style.style_mapper.StyleFontSizeDefaultContinuousMapper

Custom continuous style mappers need to inherit from the xgmml.style.style_mapper.StyleContinuousMapper class:

class StyleContinuousMapper(StyleMapper):
    def __init__(self, values: list, **kwargs):
        super(StyleContinuousMapper, self).__init__(values)

        self._min_value = min(self._values)
        self._max_value = max(self._values)

    def _transform_value(self, value) -> float:
        if self._max_value - self._min_value == 0:
            return 0.0

        return (value - self._min_value) / (self._max_value - self._min_value)

    def map(self, value):
        return self._transform_value(value)

While, values is a list of continuous values. You can overload the _transform_value method, which is used to convert the original value to the mapped value.

Custom color discrete style mappers need to inherit from the xgmml.style.style_mapper.StyleColorContinuousMapper class:

class StyleColorContinuousMapper(StyleMapper):
    def __init__(
            self, values: list, colormap: mpl.colors.LinearSegmentedColormap, **kwargs
    ):
        super(StyleColorContinuousMapper, self).__init__(values)

        self._colormap = colormap
        self._normalizer = mpl.colors.Normalize(vmin=min(values), vmax=max(values))

    def map(self, value):
        color = self._colormap(self._normalizer(value))

        return mpl.colors.to_hex(color).upper()

Among them, values is a list of discrete values, and colormap is an instance of mpl.colors.ListedColormap of matplotlib.

Passthrough mapper

A passthrough mapper is a mapper that does not perform any mapping and directly returns the original value:

class StylePassthroughMapper(StyleMapper):
    def __init__(self, values: list, **kwargs):
        super(StylePassthroughMapper, self).__init__(values)

    def map(self, value):
        return value